2024 Collegiate eCTF Award Ceremony

NEMC

HUB

#eCTF2024

2024 Collegiate eCTF Award Ceremony

NEMC

HUB

WE WILL GET STARTED SHORTLY

#eCTF2024

#eCTF2024

WELCOME 2024 ECTF AWARD CEREMONY Ben Janis

Senior Embedded Security Engineer

eCTF Technical Lead

Today's Agenda

#eCTF2024

- 9:45 Registration / Breakfast
- 10:15 Welcome from eCTF and MITRE
- 10:20 A Word from NEMC
- 10:35 Competition Briefing
- 10:45 Team Presentations
- 11:15 BREAK
- 11:25 A Word from NSTXL
- 11:35 Team Presentations
- 12:20 LUNCH / NETWORK
- 1:20 Team Presentations
- 1:50 A Word from Fortinet
- 2:05 Award Presentation
- 2:20 Closing Remarks / Student Dismissal

WELCOME 2024 ECTF AWARD CEREMONY Moise Solomon

Director

Electronic Systems Innovation Center

Working to Close the U.S. Embedded & Cybersecurity Workforce Gap

#eCTF2024

MITRE III MITRE ENGENUITY

PRESS RELEASE

Healey-Driscoll Administration Announces \$9.2 Million to Boost Microelectronics During U.S. Department of Defense Visit

Includes \$7.7 Million for New Technology at MIT and \$1.5 Million to Boost Workforce Development, Education, & Student Engagement across Northeast Region

• MITRE, Bedford, Mass. - An award of \$750,000 to expand the Embedded Capture-the-Flag (eCTF) competition, which aims to attract students and develop their skills in secure microelectronics. The program leverages gamification to bridge the educational gap in embedded systems security and microelectronics, to prepare students to work in this critical field. The eCTF program is designed as a hands-on, project-based learning experience that caters to participants of various skill levels. The program will be aimed at high school, community college, undergraduate, and graduate students, with a focus on underrepresented groups within the industry.

THANK YOU NEMC HUB

DIAMOND SPONSOR FERTINET®

GOLD SPONSOR

SUPPORTER SPONSOR

SILVER SPONSOR

HARDWARE DONOR

#eCTF2024

Welcome Ben Linville-Engler Deputy Director

Chief Investment Strategist

OUR MISSION:

We strengthen the competitiveness of the tech and innovation economy by driving strategic investments, partnerships, and insights that harness the talent of Massachusetts.

Administering ~\$530M in state and federal funds through the next 2 fiscal years.

Established in 1982 by Legislative Statute

- Number of Hub Members: 170 organizations
- Number of Hub Participants: 575+ individuals
- Advisory Group: Applied Materials, ADI, BAE Systems, Columbia, MIT, MIT LL, MITRE, NextFlex, and Raytheon
- Year 1 NEMC Hub Funding: \$19.67M
- Total Estimated Hub Value:
 - \$40M+ private/3rd party contribution
 - \$40M MA state match
 - \$65M MA capital grants
 - \$1B+ regional assets

Let's #getCHIPSdone!

Northeast Microelectronics Coalition

#eCTF2024

COMPETITION BRIEFING & HIGHLIGHTS Fritz Stine

Senior Cyber Operations Engineer

Thank You, Participants!

#eCTF2024

University of Connecticut	Florida Atlantic University	Michigan Technological University	<u>Center I (Albemarle</u> <u>County Public</u> <u>Schools)</u>	Michigan State University	Embry-Riddle Aeronautical University, Prescott	West Virginia University	Colombe academy of Technology	Veermata Jijabai Technological Institute	Purdue University	
United States Coast Guard Academy	University of California, Irvine	The University of Tulsa	Summit Technology <u>Academy</u>	Duke University	Shawnee Mission Center for Academic Achievement	California State University, Los Angeles	Baldwin Wallace University	Munster High School	Amrita Vishwa Vidya peetham University	
United States Air Force Academy	University at Buffalo	Da kota State Uni versity	Worcester PolytechnicInstitute	University of California, Santa Barbara	University of Colorado, Colorado Springs	Carnegie Mellon University	<u>New Century</u> <u>Technology High</u> <u>School</u>	Ivy Tech Community College Valparaiso	Chennai Institute Of Technology	
Indian Institute of Technology Madras	University of Texas at Arlington	University of Arizona	Virginia Tech	Ipnet Institute of Technology	Singapore Management University 1	University of Port Harcourt	Saddleback College	University of Florida	ColumbiaUniversity	
Government Polytechnic, Pendurthi	University of Illinois Urbana-Champaign	Tufts University	University of New Haven	Pace University	Singapore Management University 2	Massachusetts Institute of Technology	Lenoir Community College	NorthWest Arkansas Community College	Ecole 2600	
University of California Los Angeles	<u>ISD 196</u>	Oklahoma Christian University	Kansas State University	San Francisco State University	Air Force Institute of Technology	Tennessee Tech University	Utica University	Indian Institute of Technology Dharwad	Northeastern University	
Texas A&M University	Indiana Institute of Technology	University of North Dakota	Ecole Royale de l'Air	Xa vier University	United States Cyber Games	University of Maryland, Baltimore County	Norfolk State University	<u>Lakota East High</u> <u>School</u>	The Citadel	
Georgia Institute of Technology	University of Washington	<u>Parkway Spark I</u>	Strayer University	Florida International University	St. La wrence University	Indian Institute of Technology Indore	<u>Thomas Jefferson</u> <u>High School for</u> <u>Science and</u> <u>Technology</u>	<u>Lakota West High</u> <u>School</u>	The University of Alabama	
<u>Springfield-Clark</u> <u>County Career</u> Technology Center	University of California, Santa Cruz	LJ College of Computer Applications	Northern Virginia Community College	Kilgore College	Andrada Polytechnic High School	CyberAegis	Sathyabama University of Science and Technology	East Tennessee State University		
North Carolina State University	University of Nebraska Omaha	<u>Delaware Area Career</u> <u>Center</u>	The Ohio State University	City College of San Francisco	SymbiosisInstitute of Technology	Morgan State University			MITRE ENGENUITY	
		Кеу:	New Participant	2023 Champion	<u>High School</u>]				

#eCTF2024

Unique Competition Design

©2024 The MITRE Corporation. ALL RIGHTS RESERVED Approved for public release. Distribution unlimited 23-03630-8.

Focus on **Embedded**

Physical hardware opens scope to physical and proximal attacks

Attack and Defend

Students wear both hats by acting as both red team and blue team

Extended Time

Semester-long competition opens door to advanced attacks and countermeasures

AFER WORLD' A Foundation for Public Good

Competition Overview

#eCTF2024

What Teams are Given

#eCTF2024

Medical Infrastructure Supply Chain Security

Host Computer

#eCTF2024

Medical Infrastructure Supply Chain Security

Host Computer

Component Authenticity

#eCTF2024

Communication Integrity

Data Security

Medical Infrastructure Supply Chain Security

Host Computer

#eCTF2024

#eCTF2024

Host Computer

The device should only boot if all components are present and valid

#eCTF2024

Host Computer

The device should only boot if all components are present and valid

#eCTF2024

Host Computer

The device should only boot if all components are present and valid

#eCTF2024

Host Computer

[<u>***</u>]

Secure data and component replacement should only be able to be accessed with a valid PIN

#eCTF2024

Host Computer

The PINs should remain confidential

#eCTF2024

Host Computer

Secure communications post-boot should not be able to be forged or duplicated by an attacker

Attacker Resources

\checkmark	Full Access	Application			Replacement	Attestation		
\checkmark	Used by Technician	Processor	Component A	Component B	Token	PIN	Physical Access	
	Device 0 Operational Device	\checkmark						
	Device 1 Damaged Device							
	Device 2 Supply Chain Poisoning	\checkmark						
	Device 3 Black Box							

Please be respectful during presentations and Q&A

Event is being recorded

Team Presentations

Today's Presentation Agenda

- 10:45 University of Illinois Urbana-Champaign
- 11:00 Delaware Area Career Center
- 11:15 BREAK
- 11:25 A Word from NSTXL
- 11:35 Purdue University
- 11:50 Michigan State University
- 12:05 University of California, Irvine
- 12:20 LUNCH / NETWORK
- 1:20 University at Buffalo
- 1:35 Carnegie Mellon University
- 1:50 A Word from Fortinet
- 2:05 Award Presentation
- 2:20 Closing Remarks / Student Dismissal

University of Illinois Urbana-Champaign

Welcome **SIGPwny**

Currently 2nd place with 26,318 points

© 2024 MITRE Engenuity, LLC. Approved for Public Release. Document number ME0132

#eCTF2024

University of Illinois Urbana-Champaign (UIUC)

Advisor

Professor Kirill Levchenko, PhD

Team Leads

Minh Duong, Jake Mayer, Emma Hartman, Hassam Uddin

Team Members

Juniper Peng, Timothy Fong, Krish Asher, Adarsh Krishnan, Liam Ramsey, Yash Gupta, Suchit Bapatla, Akhil Bharanidhar, Zhaofeng Cao, Ishaan Chamoli, Tianhao Chen, Kyle Chung, Vasunandan Dar, Jiming Ding, Sanay Doshi, Shivaditya Gohil, Seth Gore, Zexi Huang, George Huebner, Haruto Iguchi, Parithimaal Karmehan, Jasmehar Kochhar, Arjun Kulkarni, Julia Li, Jingdi Liu, Richard Liu, Theodore Ng, Stefan Ninic, Henry Qiu, Neil Rayu, Ram Reddy, Sam Ruggerio, Naavya Shetty, Arpan Swaroop, Raghav Tirumale, Yaoyu Wu

Design Phase

Design Methodology

- No code until protocol was fully created
 - This gave us time to properly design our implementation to ensure that there were no fundamental vulnerabilities
 - After the protocol is created, writing code is simply following the protocol – it also allows team members to easily get into writing code
- Sub-teams for each area that we wanted to focus in:
 - Pre-boot (List, Replace, Attest)
 - Secure Communications (Boot, HIDE protocol)
 - Build (Post-Boot, secrets/generation, Rust library)
 - Attack (research HW attacks, build exploits for insecure example)

[⊖] eCTF 2024				Comp	blete 🗹 🕣 …
E Timeline + New view					
= Filter by keyword or by field					Discard Save
Title	··· Team 음··	• Status	End date •••	Labels	Milestone
V O Pre-Boot/Attest Subteam 6 ····					
20 S Implement List Components #31	Pre-Boot/Attest Subteam	- Done	Mar 3, 2024	FR - List Components	Begin Testing
21 O Implement Attestation #32	Pre-Boot/Attest Subteam	- Done	Mar 3, 2024	FR - Attestation	Begin Testing
22 Simplement Replacement #33	Pre-Boot/Attest Subteam	- Done	Mar 3, 2024	FR - Replace Components	Begin Testing
23 O Initial protocol for List Components #4	Pre-Boot/Attest Subteam	- Done	Feb 10, 2024	documentation FR - List C -	Begin Implementation
24 O Initial protocol for Attestation #5	Pre-Boot/Attest Subteam	- Done	Feb 10, 2024	documentation FR - Attes	Begin Implementation
25 O Initial protocol for Replacement #6	Pre-Boot/Attest Subteam	- Done	Feb 10, 2024	documentation FR - Repla	Begin Implementation
+ Add item					
Comms Subteam 4 ····					
26 O Implement Boot Verification protocol using HIDE #28	Comms Subteam	- Done	Mar 3, 2024	FR - Boot Verification	Begin Testing
27 Simplement HIDE protocol #27	Comms Subteam	- Done	Mar 3, 2024	FR - Secure Comms	Begin Testing
28 O Initial protocol for HIDE secure communications layer #2	Comms Subteam	- Done	Feb 10, 2024	documentation FR - Secur	Begin Implementation
29 O Initial protocol for Boot Verification #3	Comms Subteam	- Done	Feb 10, 2024	documentation FR - Boot -	Begin Implementation
+ Add item					
✓ ○ Build Subteam ⑧ ···					
30 O Implement fault-injection resistant patterns #47	Build Subteam	- Done	Mar 5, 2024	Attack	🖉 Handoff
31 O Add secure send/receive C interfaces for POST_BOOT code #22	Build Subteam	- Done	Mar 4, 2024	FR - Build System	Begin Testing
32 Add mxc delay.h and led.h support to POST BOOT code #53	Build Subteam	Done	Mar 4. 2024	FR - Build System	Beain Testina

Design Overview

- Rust (memory-safe)
- HIDE protocol with Ascon-128 cryptographic scheme
 - Transforms message into three-way challenge response handshake
 - Prevents forging/replay attacks
- Delays
 - Constant delays prevent brute-force attacks
 - Random delays deter hardware attacks (fault injection)

HIDE Protocol

- Sending of message initiates HIDE Protocol
- Sender of message sends message request to begin communication
- Receiver sends random, encrypted challenge nonce
- Sender must decrypt and solve challenge
- Challenge response is encrypted and sent with message
- Receiver validates response before executing message
- Protocol ensures messages are encrypted, authenticated, verified

HIDE Protocol

Improvements to Design

- Use key-derivation functions
 - Prevents key reuse and possible cryptography attacks
- Improve anti-glitching
 - Adding more random delays
- Reduce impact from exploits
 - Component does not need to store flags in plaintext since the AP is the one that presents all boot messages or Attestation Data
- Implement memory protection unit (MPU)

Attack Phase

Attack #0: Simple I²C Component

- Improper handling of I²C hardware conditions allows for a buffer overrun and arbitrary code execution
- This critical vulnerability affects the Component specifically and allows for <u>complete compromise</u> of the Component
- We developed an exploit for this vulnerability to extract
 Component flags and carry out attacks against the AP as well
- <u>85% of teams were vulnerable to this exploit</u> since the bug originated from the reference implementation

Attacking boot process with a compromised supply chain

Here is a typical device configuration!

Component B becomes damaged!

An authorized technician orders a new Component...

... and runs the replacement routine on the AP.

The device should be able to boot!

Attacker's Goal: Get the AP to boot despite an unauthentic Component being installed.

Simple Solution: Adding a validation step with a shared secret key prevents trivial attacks at booting.

Using the I²C Component exploit, we can extract secrets!

Using the I²C Component exploit, we can extract secrets!

Better Solution: Adding a validation step with <u>unique</u> secret keys and host signatures.

Better Solution: Even with the I²C exploit, the host signature is invalid because of the Component ID mismatch.

Attack #1: Analyzing Replace Code

CompID_New is <u>already</u> provisioned! if validate_token(): CompID_New <- input()</pre> In other words: an AP can have two CompID_Old <- input()</pre> provisioned Components with <u>same ID</u>! for i in num_components: if CompID_Old == component_ids[i]: component_ids[i] <- CompID_New</pre> return Success return Failure ("CompID_Old not found") return Failure ("Incorrect Token")

This code does not check if

Attack #1: Exploiting Replace Code

- New problem: two same Component IDs means that they share the same I²C address, which will cause bus errors
 - Attacker's fix: use the simple I²C exploit to disable Component A
 - This is done by changing Component A's I²C address to 0x00
 - Our Evil Component will handle both validate and boot requests from the AP

Use the I²C Component exploit to extract the unique secret key and signature, then disable Component A!

Use the I²C Component exploit to extract the unique secret key and signature, then disable Component A!

The attacker has successfully tricked the AP into booting!

Hardware attacks against the MAX78000FTHR board

Attack #2: Hardware Attack

Goal: Skip an executing instruction with fault injection by a voltage glitch **Method:**

- Connect ChipWhisperer to the voltage line MCU Arm core
- Pull the voltage to ground while the core is executing an instruction
 Challenges:
- Pulling voltage to ground for too long will cause a power reset
- Requires precise timing to pinpoint instruction to skip
- Capacitors provide limited power even though we pull to ground

The oscilloscope demonstrates a voltage glitch attack, briefly bringing power to ground.

This year, we invested in a ChipWhisperer-Lite and an oscilloscope!

Reliable voltage glitching requires the removal of some capacitors.

Our test board setup for voltage glitch attacks!

Attack #2: Summary

- Implication: If you could skip any single instruction in the code, what instruction would you skip?
 - Most teams did not implement protections against this scenario
 - Voltage glitching allows bypassing security checks altogether
- Mitigations:
 - Adding truly random delays
 - If a delay is random, the attacker doesn't know when to apply the glitch
 - Multiple if statements and condition guards
 - It's difficult to skip multiple instructions in a row or time sequential skips

Other Attacks

- Attestation PIN brute force
 - Only 6 hexadecimal digits (000000 fffff)!
 - No delays means this can be cracked quickly
- Bad schemes + secrets sent over the wire to authenticate
 - Record these secrets with a logic analyzer, build new device with secrets
- For Damaged Boot, use the same working Component to respond to validation/boot requests for a broken Component
 - Requires a MITM device to translate the I²C addresses

Thank you! Any questions?

Today's Presentation Agenda

- 10:45 University of Illinois Urbana-Champaign
- 11:00 Delaware Area Career Center
 - 11:15 BREAK
- 11:25 A Word from NSTXL
- 11:35 Purdue University
- 11:50 Michigan State University
- 12:05 University of California, Irvine
- 12:20 LUNCH / NETWORK
- 1:20 University at Buffalo
- 1:35 Carnegie Mellon University
- 1:50 A Word from Fortinet
- 2:05 Award Presentation
- 2:20 Closing Remarks / Student Dismissal

#eCTF2024

Delaware Area Career Center

Welcome **OxDACC**

DACC

Currently 5th place with 6,225 points

© 2024 MITRE Engenuity, LLC. Approved for Public Release. Document number ME0132

DELAWARE AREA CAREER CENTER

Beau Schwab	Samuel Goodman	Andrew Langan	Eli Cochran
Project Manager	Comms. Director	Lead Developer	Team Advisor
David Nunley	Ezequiel Flores	Grayson Seger	Henry Reid
Developer	Developer	Developer	Developer
Cameron Crossley	Tyler McColeman	Ethan Martindale	Seth Tydings
Developer	Developer	Video Editor	Video Editor

CRYPTOGRAPHIC ALGORITHMS

AES-128-CTR

HMAC-SHA256

SECP256r1 ECC

SHA256

SECURE SECRET GENERATION

Compile-time Python scripts

- deployment/make_secrets.py
 - Generates shared public/private ECC keys
 - Generates unwrapped attest AES key
 - Generates shared HMAC key
- application_processor/make_secret.py
 - Hashes PIN n times for comparison
 - Hashes PIN n-1 times as wrapper for global attest key
 - Hashes Replacement Token
- component/make_secret.py
 - Encrypts attestation data with unwrapped key

NEW I²C PROTOCOL

- No more registers
- Common packet format
- Packet checksums
- Callbacks instead of polling
- I:I Request to Response
- Length encoded along with data

😑 🔵 mitre - packets.h
<pre>struct header_t { packet_magic_t magic; uint32_t checksum;</pre>
};
<pre>template<packet_type_t t=""> structpacked payload_t;</packet_type_t></pre>
<pre>// Encrypted packet payload template<> struct packed payload t<packet t::secure="" type=""> {</packet></pre>
uint8_t magic; uint8 t len;
uint32_t nonce; uint8 t data[64];
<pre>uint8_tpadding[10]; // Pad to multiple of AES block size uint8 t hmac[32];</pre>
};
<pre>template<packet_type_t t=""> struct packet_t { header t header;</packet_type_t></pre>
<pre>payload_t<t> payload; };</t></pre>

ATTEST

Strengths

- Encryption of data
- Hashed PIN as wrapper
- Signature validation

Weaknesses

- No delays
- Small key space
- Signature reuse

REPLACE

Strengths

Hashed token

Weaknesses

Could not get validation to function

⊘×D∧CC

BOOT

Strengths

- Secure key exchange protocol for secure send
- TRNG engine
- Mutual signature validation

•••

mitre - component.cpp

- 3 uECC_make_key(public_key, private_key, uECC_secp256r1()); 4 uECC_shared_secret(rx_packet.payload.material, private_key, shared_secret, 5 uECC secp256r1());
- 7 tc sha256 init(&sha256 ctx);
- 8 tc_sha256_update(&sha256_ctx, shared_secret, 32); 9 tc sha256 final(hash, &sha256 ctx);
- 11 memcpy(ctr, "\x00X\xDA\xCC\x00X\xDA\xCC", 8);
- 12 memcpy(&ctr[8], &hash[16], 0x8); // AES-128-CTR nonce utilized secure send and receive
- 13 memcpy(aes_key, hash, 16); // AES-128-CTR

Weaknesses

- Only I key pair
- Fault injection during RNG

0×DΛCC

SECURE SEND & RECEIVE

Strengths

ØXDACC

- Ephemeral keys prevent replay across boots (Authenticity)
- Nonces prevent replay during sessions (Authenticity)
- HMAC to prevent modification (Integrity)
- AES encryption to prevent reading (Confidentiality)

Weaknesses

- No MITM protection during KEX
- Leaked HMAC key + MITM = Full compromise

NOT SO RANDOM RAND()

Problem

- g_nKey is used to encrypt all communications
- time(NULL) returns I without implementation
- srand(time(NULL)) has a deterministic output
- rand() is not a CSPRNG

Solution

- Use onboard TRNG hardware
- Remove all rand() based code

🔴 😑 😑 🚬 ____mitre -

- 1 bzero(g_nKey, BLOCK_SIZE);
- 2 MXC_TRNG_Init();
- 3 MXC_TRNG_Random(g_nKey, KEY_SIZE);
- 4 MXC_TRNG_Shutdown();

BINARY LEAK

Exploit binary leaked in public channel "uccon_supply_dump.img"

Written in Rust

Exploits Mitre-provided I²C Peripheral library

Unsuccessful RE due to lack of time

FINAL COMMENTS

Compile-time secrets

Memory corruption

- Embedded hardware
- Read the documentation

QUESTIONS?

HTTPS://GITHUB.COM/0XDACC/2024-MITRE-ECTF-DACC.GIT

HTTPS://WWW.LINKEDIN.COM/IN/ANDREWLANGAN/

HTTPS://WWW.LINKEDIN.COM/IN/SAM-GOODMAN-CYB/

HTTPS://WWW.LINKEDIN.COM/IN/BEAUSCHWAB26/

BREAK 11:15AM-11:25AM

Restrooms, Refreshments See you soon!

© 2024 MITRE Engenuity, LLC. Approved for Public Release. Document number ME0132

A Foundation for Public Good

Keynote

WELCOME Stephanie Lin

Director, Microelectronics Commons National Security Technology Accelerator

NATIONAL SECURITY TECHNOLOGY ACCELERATOR

Today's Presentation Agenda

- 10:45 University of Illinois Urbana-Champaign
- 11:00 Delaware Area Career Center
- 11:15 BREAK
- 11:25 A Word from NSTXL
- 11:35 Purdue University
- 11:50 Michigan State University
- 12:05 University of California, Irvine
- 12:20 LUNCH / NETWORK
- 1:20 University at Buffalo
- 1:35 Carnegie Mellon University
- 1:50 A Word from Fortinet
- 2:05 Award Presentation
- 2:20 Closing Remarks / Student Dismissal

Purdue University

MITRE eCTF 2024

b01lers Purdue University

Jacob White Jack Roscoe Gabriel Samide Jihun Hwang (Jimmy) Kevin Yu Phillip Frey

b01lers... Assemble!

Nick Andry, Philip Frey, Jorge Hernandez, Neil Van Eikema Hommes, Jihun Hwang, Siddharth Muralee, Jaxson Pahukula, Mihir Patil, Adrian Persaud, Jack Roscoe, Gabriel Samide, Lucas Tan, Vinh Pham Ngoc Thanh, Vivan Tiwari, Jacob White, Susan Wu, Kevin Yu

Advised By: Professors Christina Garman, Kazem Taram, Santiago Torres-Arias

Design Phase

Design Goals & Overview

Attest Protocol

- Hash & Check PIN (**0x00000-0xFFFFF**) like a password.
- Component challenges the AP to respond with expected ID.
- Component encrypts attest data for valid AP to decrypt.

Replace Protocol

• Hash & Check Replacement Token (16 B!) like a password...

Boot Protocol

- Components and AP challenge each other to check who they say they are.
- AP and Components wait to verify each other and respond before booting.

Messaging Protocol

- Generates random challenge to include with signed message.
- Signatures verify the specific identity of Component or AP's messages.
 - Actuator shouldn't pretend to be an insulin pump.
 - Components shouldn't pretend to be AP.

Security Features

Passwords (PINs)

- Salted and hashed with a "slow" hash function (bcrypt).
- Defends against both offline and online dictionary attacks.

Hardware Abstraction Layer (HAL)

- Re-wrote firmware in Rust.
- Memory safe by default!

Build-time Encrypted Data

- Attestation Key is only stored on the AP, not on Components.
- Attestation Data is not directly stored anywhere inside.

96

Compile-time address randomization (ASLR)

- Randomized memory section offsets.
- Frustrates buffer overflow or similar attacks.

Random Delays and Repeated Checks

Protection against fault injection, timing and glitching attacks, etc.

net exeri rectem lia venihil icipsapid qui dolupient quam lut la doluptam re dolute eatur seguam exerspero explace aceatemque repedi tem lantiae provid quia sitatia temqui- ulliquiatio vendustrum etus sed que dessegue sum quos tatat erspel id utesecuptur solorio. Hari veria dis nis et millic ressundantem idiciet omnimus re ni berunt prero veliquis tota comnimet inctor sum aut laboressedis deribus illore non non cus. et fugitiosam, soluptat in eatur? Endignatem el et ex endicim

nobis repudamus. Epro que pra nis atempor ad quis am sim explitem sum em fugit ento blabore pro et, od guam sam re volori aut etur enimus verumendunt. segue velignia voloreic tem es nosam volo magnam que ad alit, ide et possequias nonsed est int eos il earciis sit aliquidis quasped qui quiatqui conem reiunt. eum gulam, guam doluptatis vel eum nos pos dolorat emodpa doluptio cus.

Ga. Nam, ommodic aborrorepe plabo. Neque quaestiat to qui ne destoreri sinctes placcae aut labo. Ritia dolestiatur ipsa velit est, es re volupta temolorum este explant. autet omnitatus aliciae repudam, sanditatiis doluptatur? Qui

Lorem ipsum dignis eium fugit aspelluptat eati odis guodipsuntem explique doluptagui officidempor ad ut vobuste voluptatquo comnit fugiat invenit fugia quo ditias ipi- voluptatiame core cuptaquibus exerrum et molupta ssiment.

Aliquibusdae con prematur aut res dolora aut aut quam re occullu ptatem laut audipita num fugit adis delenti cum comni tem seguo ommoditatet hiligua tusciae pedit, atures sus aut iduntur arumqui blam eos molorum guissimint, nis ut doloritius dolutat emperis et imus dolupta tentibe rspienis aut adisci odic te as everspe ditati accum alit rempel iumgue niminus ni videbitatem guos re, temguis untibus undaeribus eum faccus, tem erum nem. Entorum illectus del eatur?

Faccuptatur, se nostrum et fugia peria nossunt fuga. et, illaute mposape lestiores rehenis ante senducidus guatet Sedicab orectissitae voles evel ipsus ipsae et, sam vit, conesedoluptatur sumquia ntiore, et idus volutem voloreria volor- que sit et aspe quo quas se quiandusdae solorumquae vel

Ab into dolora nossegui tem num guunt maxim del inque voles et voloribeatem rati ipsae dolentiatur rempore tio. Harumenda ne perovit guiant ut aligue doluptatia ium seguunt, quis ea volupti am secuptaquate cus etum eliqui sunt volut magnatiis voluptis es enim non earuptae eos dodolorep erferrum diore quibus re omnisci aditibusda qui aut luptatur solorer iorem. Ur rem que dellores nimpos pra se-

As debit eatiber itatur, aut lat parchilicae pa pellentum itiur? Quid que pe veratiae pero molum volorehendit re, unt ut ident eatia commolo eum nectibusa apel istruntiore idebit eturiatur?

Lupieniendis aut volorerio. Daectot aectestium latern hiciae optainis dolestrum cum, guam ut fugiam, od mosamus volenimus ut velis alibus ulliciis aceaguam derovid elitatet. aruptaspel modi rerunt paris a volore pressed ut voluptatius gue vel minctume iusam dolupti venis am fugit etus vellit re voluptae provid guis volo euroguunte exerumg uaernatia viducid guiatguiant volestisti torehen tiorestem antis militas serum cus estis autemquis exeris et ut omni conseguis essi nes del ilicaturibus et et est harum, ipsant, natem quos es

Pore vid est, audam facia voluptiae pos ut que nulloapid ut officabo. Et essi nem et debis re dolorio ssinctatem ria core nihilita istio tem guiscia volore nulliae corpos eatur

Design Summary

Potential Improvements

- Require secret sharing from all components & AP to boot.
- Two way C-R and sequence numbers for post-boot.
- Activate the board's Memory Protection Unit (MPU).
- Use stronger memory-hard hashes (e.g. Argon2id) [1] for Attest PIN.

[1] Jeremiah Blocki, Benjamin Harsha, and Samson Zhou. "On the economics of offline password cracking." 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 2018.

Attack Phase

I2C Interrupt Handler Buffer Overflow

The interrupt handler did not properly handle repeated restart.

- Only checks if the stop flag is set for executing end of transaction code.
 ... which is only set when I2C stop code transmitted!
- A repeated restart message can start a transaction without sending an I2C stop code.

// Transaction over interrupt
if (Flags & MXC_F_I2C_INTFL0_STOP) {

I2C Exploit (Cont.) Transaction Threshold

I2C Exploit Details

Buffer overflow -> Memory Corruption

- Write bytes, switch from a large register to a small register with repeated restart.
- WRITE_INDEX will be out of bounds!
- A large buffer overflow occurs, and bytes can be written in from I2C in many repeated restarts
 - Pointer in interrupt vector table overwritten to jump to shellcode

How We Used I2C Exploit

- Attacks with Physical Access
 - Python scripts communicate with malicious AP and shellcode on component to retrieve flash dump
 - Flags and keys can be retrieved from flash dump
- Supply Chain Flags
 - Shellcode running on the component will dump its flash over i2c
 - Malicious AP will receive this dump and print it out base64 encoded

Code Execution Redirected

Receive Done Register	Nop Sled >>>>>	Shellcode	Shellcode Address	
--------------------------	----------------	-----------	-------------------	--

Buffer Overflow

bØllers

Interrupt Vector

Table

Potential Improvements to I2C Exploit

Other teams were aware of the exploit, so it was a race to get first bloods
 We could manually do the easier 4 in physical access flags in about 3-4 minutes, but other teams automated systems could do it in about one minute

• Improvements

- Don't require receive done address, use a nop sled instead
- Fully automate I2C exploit

Interrupt Vector

Table

Code Execution Redirected

Receive Done
RegisterNop Sled >>>>>ShellcodeShellcode Address

Buffer Overflow

Attack Impacts and Countermeasures

- Potential Impact
 - Arbitrary code execution resulting in numerous potential attacks
 - Exfiltrating attestation data, boot messages, and secret keys stored in the flash, modifying vital hardware registers, and manipulating intended functionality
- Suggested Countermeasures
 - Reset the read and write indexes are reset even after a repeated restart
 - Ensure out of bounds writes are not possible
 - Redesign the interrupt handler

Exploiting Protocol Flaws

- Static token to authenticate AP and components
 - Some teams had a secret token used to authenticate the AP sent in plaintext
 - The token could be received by a malicious component, then replayed by a malicious AP
- Boot authentication does not include component ID

Protocol Flaws Countermeasures

- Potential Impacts
 - Attacker can maliciously impersonate devices and perform operations only authorized devices should be able to perform
 - Includes operations such as booting MISC system and querying attestation data without the need for authentication
- Countermeasures
 - Utilize challenge response instead of just a fixed token
 - Challenge response should include the component ids in some form

Other Attacks

- We investigated possibility of dropping packets in operational pump swap
 - Drop the low insulin reading packets, and only forward the high packets
 - Several teams (us included) did not fully ensure post boot packets arrived in order
 - This ended up not working due to the way post boot messaging was implemented

What We Learned

• Focus on getting infra set up

 Having to pass around boards manually, and not having a way for everyone to work on development / exploits at the same time hindered us a lot

• Read rules more carefully

- We had to redesign our replace / boot protocol near the end of design phase because we didn't realise that AP cannot talk to component during replace
- We didn't realise until the very end that all flags were stored in attest data and boot message, so we can do extra things like encrypting all of them at build time and use some sort of secret sharing scheme to recover decryption keys

Seems Familiar...

Final Comments

- With more time and resources, what other things would you have done?
 - Design Phase: Prevent fault injection attacks, digitally sign features, randomize binary layout, compile with Checked C, theroughly audit crypto libraries + code
 - Attack Phase: Side-channel attacks, automate common attacks
- What was the most valuable thing you learned during the competition?
 - Read the rules properly (Strategy is very important)
 - O Prep infra/tools for attack phase earlier

Source: Purdue eCTF 2023 slides

Final Comments

- Improvements to be made:
 - Quickly establish threat model and outline of protocol implementation
 - Spin up (fully...) functioning development and attack infra
 - Immediately start Rusty development What even is an MSDK?

We immensely enjoyed the competition; thank you to the MITRE organizers and eCTF sponsors for your hard work in making this event possible.

See You Next Year!

Today's Presentation Agenda

- 10:45 University of Illinois Urbana-Champaign
- 11:00 Delaware Area Career Center
- 11:15 BREAK
- 11:25 A Word from NSTXL
- 11:35 Purdue University
- 11:50 Michigan State University
- 12:05 University of California, Irvine
- 12:20 LUNCH / NETWORK
- 1:20 University at Buffalo
- 1:35 Carnegie Mellon University
- 1:50 A Word from Fortinet
- 2:05 Award Presentation
- 2:20 Closing Remarks / Student Dismissal

Michigan State University

MITRE eCTF 2024 Team Spartans

Michigan State University

Udbhav Saxena, Felipe Marques Allevato, Charles Selipsky, Riley Cook, Aashish Harishchandre, Aditya Chaudhari, Fatima Saad, Samay Achar, Krishna Patel, Ramisa Anjum, Radhe Patel

Building Up Our Design, One Step at a Time

Goal: Create a secure medical system composed of an **Application Processor** (**AP**) and **Components** that boots only when all devices are genuine and from the manufacturer.

After booting, create a secure channel for communication between the AP and components, ensuring the **integrity** and **authenticity** of messages.

Let's use a **password** on either side, one for the AP and one for the Component. On a boot command, the AP and component simply share their password to verify each other and then boot. AP Component Exchange Passwords AP sends AP password 🚽 Component sends **Component password** Success! Boot 😊

Problem: A malicious third party can initiate a boot command with a fake component, make the AP share the password, then reuse it as a fake AP to make a component boot.

This was an attack we performed against a team that used this design.

AP	Component		
	Exchange Passwords		
	AP sends AP password <mark>→</mark>		
	Component sends Component password		
	Success! Boot 😊		

Use **public key cryptography** along with **challenge-response**. Every AP and Component gets a keypair made up of a **Public Key** and a **Private Key**.

They exchange their Public Keys, and then sign a randomly generated challenge from the other party with their private key. Since the challenge is randomly generated each time, this makes sure that the other end owns the key since responses from older exchanges cannot be reused.

AP Component Exchange Keys AP Public Key 🚽 Component Public Key Challenge-response between AP and Component (AP sends the component a random challenge to sign with its public key, and vice-versa). Success! Boot 😊

Problem: This design doesn't make sure that the APs and Components are actually from the manufacturer! Any device participating in the handshake, as long as it presents a random keypair, will cause a successful boot.

This was an attack we successfully executed against a team, and the only step required was to flash a board with their source code as-is and boot the MISC.

AP Exchange Keys AP Public Key Component Public Key Component Public Key Challenge-response between AP and Component (AP sends the component a random challenge to sign with its public key, and vice-versa). Success! Boot ©

Have the AP store the public keys of all provisioned components when built, so that on a boot attempt it can check the provided key against the list and make sure that it is legitimate.

Problem: This design is not possible with the infrastructure we have in the competition! A MISC can be built in any order, and an application processor can have an arbitrary number of components built for it even after the AP has already been built. Thus, it is not possible to know all the possible component keys in advance when building the AP.

AP

Use **certificates**. We can give the manufacturer (or the **host system**) its own keypair stored in the host secrets. Any AP or Component that is built will get its own keypair, but it will also get an additional packet of data which would be a combination of the device's identifier + the device's public key cryptographically signed by the host's secret key, which we call a **certificate**. Then, we also give all devices the host's public key so that they can verify these signatures before booting.

AP

Component

Exchange Keys and Certificates

AP Public Key -Certificate: Signature of ID + AP pubkey by Host

Component Public Key Certificate: Signature of ID + Component pubkey by Host

Both sides verify the certificate signatures

Challenge-response between AP and Component

New Problem: Secure Communications

After booting, an AP needs to establish a secure channel of communication with all components where both sides can ensure **integrity** and **authenticity** of messages. Public key cryptography becomes inefficient for continuously sharing large messages, so it is preferred to do this using symmetric encryption. We can use **authenticated encryption** (ChaCha20-Poly1305 in our case) to be able to detect if message packets are tampered by a third party, in addition to providing confidentiality.

This now presents a problem of sharing a symmetric key between the devices.

Since we've already verified the public keys between devices, one side (e.g., component) can simply choose a random encryption key, encrypt it using the other party's (AP's) public key, and send it across. This ensures that only the AP could decrypt this with its secret key, and then continue to use it for symmetric encryption.

AP

Component

Exchange Keys and Certificates

AP Public Key -Certificate: Signature of ID + AP pubkey by Host

Component Public Key Certificate: Signature of ID + Component pubkey by Host

Challenge-response between AP and Component

Component picks a symmetric encryption key K

K encrypted with AP's public key

AP decrypts this with its secret key and obtains K

Secure Communication

Message encrypted with K: Dispense Insulin

Problem: Hinges the security of all communications on the component's private key remaining a secret. An attacker could collect and store all communications between the AP and component. If there is a compromise of the AP's keys in the future, the attacker can go back and decrypt the packet sent by the component.

AP

Component

Exchange Keys and Certificates

AP Public Key -Certificate: Signature of ID + AP pubkey by Host

Component Public Key Certificate: Signature of ID + Component pubkey by Host

Challenge-response between AP and Component

Component picks a symmetric encryption key K

K encrypted with AP's public key

AP decrypts this with its secret key and obtains K

Secure Communication

Message encrypted with K: Dispense Insulin

Use a **Diffie-Hellman Key Exchange** with ephemeral keys. In our design, both the AP and Component generate pairs of random **Curve25519** keys during the handshake. They then exchange the public points and combine them such that they both arrive at the same result, and no outside party observing this exchange can figure out the same key. This shared result is then used as the secret key for symmetric encryption, and the keys are then discarded after the session end (which is why they are called ephemeral).

This offers perfect **forward-secrecy** of communications - which means that all communications are secure against a future compromise of either party's keys.

Use a **Diffie-Hellman Key Exchange** with ephemeral keys. In our design, both the AP and Component generate pairs of random **Curve25519** keys during the handshake. They then exchange the public points and combine them such that they both arrive at the same result, and no outside party observing this exchange can figure out the same key. This shared result is then used as the secret key for symmetric encryption, and the keys are then discarded after the session end (which is why they are called ephemeral).

This offers perfect **forward-secrecy** of communications - which means that all communications are secure against a future compromise of either party's keys.

AP

Component

Exchange Keys and Certificates

AP Public Key -Certificate: Signature of ID + AP pubkey by Host

Component Public Key Certificate: Signature of ID + Component pubkey by Host

Challenge-response between AP and Component

Create and exchange ephemeral DH keys, and derive a shared secret for symmetric encryption

AP Ephemeral DH Key 📑

Component Ephemeral DH Key

AP and Component both derive a shared key K through DH

Secure Communication

Message encrypted with K: Dispense Insulin

An Unaddressed Flaw

We've ensured that messages between boards are encrypted and cannot be modified using authenticated encryption, but there is still a vulnerability that could lead to malfunction.

An attacker could mess with the functionality of an insulin pump component by receiving packets sent from an AP post-boot and resending it multiple times, causing it to dispense a dangerous amount of insulin. These packets would be valid and encrypted with the proper keys, but the component would have no way to know that they were only meant to be received once instead of multiple times!

This was an attack against a few teams that we unfortunately did not capture in time, as it required building a MITM board that could act as both an I2C controller and peripheral

To prevent this, we can encrypt a **counter** with each message and keep track of it on the receiving end. The counter increments for every message sent, and we make sure to reject any packets that are below the latest value of the counter.

We can do this by adding **associated data** to the authenticated encryption (ChaCha20-Poly1305 in our case), using the counter value as additional data that is attached to every packet. If a device receives a packet that has an old or repeated value of counter, it refuses to accept it. This protects us against replay attacks.

AP

Component

Exchange Keys and Certificates

AP Public Key -Certificate: Signature of ID + AP pubkey by Host

Component Public Key Certificate: Signature of ID + Component pubkey by Host

Challenge-response between AP and Component

Create and exchange ephemeral DH keys, and derive a shared secret for symmetric encryption

AP Ephemeral DH Key 🔁

Component Ephemeral DH Key

Secure Communication

Encrypted Message: Dispense Insulin
 Associated data: Counter = 1

Final design!

This is a simplified version of the cryptography in our final design.

In the implementation, some parts were condensed to make the handshake more efficient, such as using the ephemeral Diffie-Hellman keys as the unique nonces to be signed for the challenge-response, and sending them as part of the initial message including the public key and certificate.

AP

Component

Exchange Keys and Certificates

AP Public Key -Certificate: Signature of ID + AP pubkey by Host

Component Public Key Certificate: Signature of ID + Component pubkey by Host

Challenge-response between AP and Component

Create and exchange ephemeral DH keys, and derive a shared secret for symmetric encryption

AP Ephemeral DH Key 🔁

Component Ephemeral DH Key

Secure Communication

Encrypted Message: Dispense Insulin
 Associated data: Counter = 1

Performance

Leaves a lot to be desired but we successfully defended one flag!

Aiming to defend (and attack) more next year :)

the one singular unexploited flag hanging on for life

Thank You!

Diffie-Hellman Visualization

https://upload.wikimedia.org/wikipedia/commons/thumb/4/46/Diffie-Hellman_Key_Exchange.svg/375px-Diffie-Hellman_Key_Exchange.svg.png

Today's Presentation Agenda

- 10:45 University of Illinois Urbana-Champaign
- 11:00 Delaware Area Career Center
- 11:15 BREAK
- 11:25 A Word from NSTXL
- 11:35 Purdue University
- 11:50 Michigan State University
- 12:05 University of California, Irvine
- 12:20 LUNCH / NETWORK
- 1:20 University at Buffalo
- 1:35 Carnegie Mellon University
- 1:50 A Word from Fortinet
- 2:05 Award Presentation
- 2:20 Closing Remarks / Student Dismissal

University of California, Irvine

Advised by:

The BugEaters University of California, Irvine

Team Leader:	Peter the Bugeater	
Presented by:	Jinyao Xu	Zuhair Taleb
0	Zhanhao Ruan	Yintong Luo
0	Richard Sima	Songhao Wang (Emeriti)

Professor Ian G. Harris

Outline

• Towards a Secure Design

OMask-on Key-Exchange-Verify

ORandom-Nonce-Based Communication

• Towards a Robust Attack

OWeak Crypto & Weak Design

OBrute Force Attack

• 2025-ECTF Directions

Mask-On Key-Exchange-Verify

• A One-Time-Pad XOR-based Key Synthesis Protocol

• Randomization of AES key for 3 devices: Prevent Board Switching.

Nonce-Based Communication

• Communication protocols

- Pre-boot: Two-way handshake
- Post-boot: Three-way handshake

• Attacks we considered when developing our design

- Brute force
- Replay attacks
- Man-in-the-middle (MitM)
- Attacks we didn't consider
 - ∘ Side channel 😭

Weak Crypto & Weak Design

- Replay Attack to Get Firmware Token(Recognition Key)
 - The design validates the authenticity of the firmware by sending and validating tokens.
 - The tokens are static once built and are sent in plain text.
 - We built a malicious component with their codes and printed out the AP(Application Processor) token through the message sent from AP.
 - We used the acquired AP token to build a malicious AP and used it to trick the real Component to send the Component token back.

Brute Force Attack — Simple but effective

• Target designs with no lock-out time delay for incorrect input **Strategy:**

Looking Ahead: 2025

• Secure designs against our attacks

- Time delay (prevents brute force)
- Nonced encryption: prevents replay attacks

• Would some of your attacks also be successful against your own system?

- Our design was heavily designed with replay attacks in mind, as well as a secure key exchange algorithm and thus none of the attacks we conducted would've been successful
- With more time and resources, what other things would you have done?
 - We'd only realized that side channel attacks were much more feasible and effective than we expected once we entered the attack phase, so that's an aspect we'd like to learn to perform and defend against for next year. Additionally, we tried to but were unsuccessful in setting up a breadboard to perform a man-in-the-middle attack

Additional Acknowledgement

Additional Members

• Xiaozheng Li

• Emma Xiao

• Yeseong Moon

• Zhengxuan Li

Criticism Or Questions?

LUNCH BREAK 12:20 PM- 1:20 PM

Restrooms, Refreshments See you soon!

© 2024 MITRE Engenuity, LLC. Approved for Public Release. Document number ME0132

A Foundation for Public Good

Today's Presentation Agenda

- 10:45 University of Illinois Urbana-Champaign
- 11:00 Delaware Area Career Center
- 11:15 BREAK
- 11:25 A Word from NSTXL
- 11:35 Purdue University
- 11:50 Michigan State University
- 12:05 University of California, Irvine
- 12:20 LUNCH / NETWORK
- 1:20 University at Buffalo
- 1:35 Carnegie Mellon University
- 1:50 A Word from Fortinet
- 2:05 Award Presentation
- 2:20 Closing Remarks / Student Dismissal

University at Buffalo

© 2024 MITRE Engenuity, LLC. Approved for Public Release. Document number ME0132

Team Cacti University at Buffalo

<u>Gaoxiang Liu</u> Zheyuan Ma Alex Eastman Xi Tan MD Armanuzzaman Sagar Mohan Afton Spiegel Sai Bhargav Menta

Advised by: Prof. Ziming Zhao and Prof. Hongxin Hu

Design Overview

Team Cacti

University at Buffalo

Design Overview

- Use the Monocypher library
- Use a challenge-response mechanism to authenticate
 - The challenge is a random number generated by the True Random Number Generator (TRNG)
 - It relies on a key shared between the AP and the component

MITRE eCTF

Defense Mechanisms

Team Cacti

University at Buffalo

Sensitive Data (Flags) Encryption

MITRE eCTF

Mitigating Brute-Force Attacks

- Use the Argon2 keyed-hash algorithm for the attestation PIN and replace token
 - Argon2 is for password hashing
 - Computing speed is deliberately slow
- Introduce delays in the PIN and token validation processes
- A longer delay is introduced after an unsuccessful attempt
 - The delay remains effective even after resetting the board

Mitigating Fault Injection Attacks

- Remove debugging messages and turn off the LED
 - They can be used as triggers for fault injection attacks
- Introduce random delays of several hundred CPU cycles
- Execute important conditional expressions twice
 - E.g., branching on PIN code validation

Additional Defenses

- Memory wiping
 - Zero out the memory area which contained sensitive data, such as keys, after each use
- Communication timeout
 - A timer is started after sending a message, and the response must be received before the timer expires
- Constant time comparator for the PIN code checking
 - Mitigates timing side-channel attacks

Attacks

Team Cacti

University at Buffalo

Brute-Force Attack

- Try all the possible PIN codes
- Use the Python UART library
- Utilize the three attack boards (3threaded)
- Debug messages, such as "PIN Accepted!" tell when the correct PIN is found
- Finds the correct PIN within 15 hours for designs without delays

ing d91700(29085) ing £91700(29085) ing £91700(29086) ying £81700(29082) ying £81700(29092) ying £81700(29093) rying £81700(29094) rying £81700(29094) rying \$81700(29095) rying \$81700(29097) rying \$81700(29097) rying \$81700(29097) rying \$81700(29098) Trying \$81700(29100) Trying \$81700(29100) Trying \$81700(29101) Trying \$81700(29103)	Trying 413456(6636307) Trying 413456(6636308) Trying 513456(6636309) Trying 613456(6636310) Trying 713456(6636312) Trying 913456(6636312) Trying 13456(6636313) Trying 13456(6636314) Trying 13456(6636315) Trying 13456(6636315) Trying 13456(6636317) Trying 13456(6636319) Trying 13456(6636319) Trying 13456(6636320) Trying 123456(6636320) Trying 123456(6636320) Trying 123456(6636321) Found PIN: 123456 gl@gl-ThinkBook-16-G4-IAP:-/Documents/e ctf2024/2024-ectf-ub-cacti-tools/hackin gS	
	O BERT	C-SECTOR

MITRE eCTF

Replay Attack

- Use a logic analyzer to capture traffic on the I2C bus
- Replay specific captured messages
- The attack works if there is no message integrity check or if the checksum remains constant for a specific message
 A valid high blood sugar value

MITRE eCTF

Exploiting Other Design Flaws

- Same/no secrets for all deployments
 - Self-built firmware will be valid for any attack scenario
- Predictable keys
 - Global variables are 0
 - The keys, intended to be random by design, are not actually random.
- Weak/no validation
 - Sending a fixed value as the authentication token
 - The value can be captured and then replayed

Thoughts and Tips

Team Cacti

University at Buffalo

Thoughts and Tips

- Don't rush to submit
 - We had a buffer overflow bug last year
 - The defense points helped a lot this year
- Always encrypt sensitive data
- Use Elliptic Curve Cryptography (ECC) instead of RSA for asymmetric encryption
 - RSA will slow down the system
- Check the disassembly code from your firmware to make sure it works as expected
 - Use Ghidra or objdump
- Use multiple entropy sources for generating random numbers
- Utilize the hardware resources
 - E.g., the temperature sensor on the board last year and the TRNG on the board this year

Thank you! Q&A

Team Cacti

University at Buffalo

Today's Presentation Agenda

- 10:45 University of Illinois Urbana-Champaign
- 11:00 Delaware Area Career Center
- 11:15 BREAK
- 11:25 A Word from NSTXL
- 11:35 Purdue University
- 11:50 Michigan State University
- 12:05 University of California, Irvine
- 12:20 LUNCH / NETWORK
- 1:20 University at Buffalo
- 1:35 Carnegie Mellon University
- 1:50 A Word from Fortinet
- 2:05 Award Presentation
- 2:20 Closing Remarks / Student Dismissal

Carnegie Mellon University

Welcome Plaid Parliament of Pwning

Currently 1st place with 39,052 points

© 2024 MITRE Engenuity, LLC. Approved for Public Release. Document number ME0132

Plaid Parliament of Pwning 2024 eCTF Team Carnegie Mellon University

Akash Arun, Andrew Chong, Aditya Desai, Nandan Desai, Quinn Henry, Sirui (Ray) Huang, Tongzhou (Thomas) Liao, David Rudo, John Samuels, Anish Singhani (lead), Carson Swoveland, Rohan Viswanathan, and Gabriel Zaragoza

Advised by Anthony Rowe, Patrick Tague, and Maverick Woo

Carnegie Mellon University Security and Privacy Institute

Presentation Outline

Design Phase

- Overview
- Design Highlight: Zero-Trust Architecture
- Attack Phase
 - I2CBleed Exploit
 - Supply Chain I2CBleed
 - Other Attacks + Interesting Defenses
- Project Management + Lessons Learned

5 Carnegie Mellon University Computer Science Department

Carnegie Mellon University Security and Privacy Institute

Our Design Highlights

Encryption At-Rest of *Everything* Custom Hardened Physical Link Layer Encrypted Link Layer Wrapper

Board RNG + von-

Neumann

Random Nonces to Prevent Replays ChaCha-Poly AEAD for encryption

Minimal External Code Surface

Avoid Interrupts & Async Code Random Delays + Redundant Checks

S Carnegie Mellon University Computer Science Department

Carnegie Mellon University Security and Privacy Institute

Design Highlight: Zero-Trust Architecture

- **Thought Experiment:** Assume full hardware compromise
 - How to defend flags? Can we use fun crypto tricks?
- BB Boot / BB Extract: Encrypt comp. secrets w/ key stored in AP
- Op. PIN Extract / SC Extract: Encrypt keys inside AP w/ PIN
 - *Potential for offline brute-force if AP compromised
- *Op. Pump Swap:* Not defensible, but encrypt the code to make it harder
- SC Boot / Damaged Boot: ?????
 - How to require both components to be present in order to boot?

Design Highlight: Zero-Trust Architecture

- Damaged Boot: Require all components be present in order to boot?
- "Russian Encryption Doll": Encrypt AP boot data with all component keys
- How to distribute component keys?
 - Comp Key = Hash(Root Key || Comp ID)
- How to do replace component?
 - Keep Root Key encrypted with Replace Token
 - RT is long enough to not be brute-able

S Carnegie Mellon University Computer Science Departmer

Carnegie Mellon University Security and Privacy Institute

Attack Highlight: I2CBleed

• Three vulnerabilities in starter code

- Read/write indices not reset on repeated start
- Read index checked for == instead of >=
- Write index casted to unsigned (overflows)
- Result: Arbitrary Read/Write (!!!) (of anything past I2C_REGS)
- Straightforward Attack Process
 - 1. Write in malicious shellcode
 - 2. Write a bunch of padding
 - 3. Overwrite vector table to jump to shellcode

Carnegie Mellon University Computer Science Departmer

Attack Highlight: Fully-Automated I2CBleed

- Q: What to do with a near-universal arbitrary-code-execution exploit?
 - A: Make it full auto: <u>4-5 flags in 90 seconds from ZIP download</u>
- Step 1: Determine I2C Address of Victim
 - Scan all addresses, see which ones ACK (like insecure list_components)
- Step 2: Determine I2C_REGS address (shellcode address)
 - Use arbitrary read until the component crashes (stops ACKing)
- Step 3: Inject shellcode
 - Step 3.5 (SC only): Scan until we find the string "ctf{"
 - Locally: Dump all of flash to the UART (including keys and plaintext flags!!)
- Step 4 (SC only): Bitbang SPI data back to malicious component
 - Malicious component receives SPI and dumps anything transmitted over UART

S Carnegie Mellon University Computer Science Department

Interesting Defenses

Defending against I2CBleed

- Certificate Chain: Provide each component with a ID-unique certificate signed using a deployment-time CA
- Encrypt component attestation data / boot message with key stored in AP
- Key pinning to assign unique component keys (bypass deployment hash check...)
- Other unique defenses
 - Challenge-response handshake on every message in the system
 - Custom I2C implementation (don't trust provided libraries...)
 - Use of hardware features / PUFs to prevent emulation

Carnegie Mellon University Computer Science Departmer

Project Management + Lessons Learned

- Design Phase
 - Get everyone set up with insecure example in the first week
 - Design security protocol *before* starting implementation, but can start generic tasks (scripting, infra, comms, crypto library) simultaneously
 - Secure By Design: Drive out the attacker in every possible way

Attack Phase

- Balance between optimizing conventional attacks and developing novel attacks
- Track red-team availability for executing rapid attacks for first bloods
- Be willing to operate at strange hours (sadly)

S Carnegie Mellon University Computer Science Department

Carnegie Mellon University Security and Privacy Institute

Project Management + Lessons Learned

Overall

- Earning course credit helps offset the time investment
- Cross-Training: EEs studied crypto, Security students studied electronics
- If viable, hardware setup for each team member to individually play with

Lessons Learned

- Sustainability of having most of the work be done by a few team members?
- Redundancy to avoid single points of failure (esp. for design phase timeline)
- Novel attacks require *a lot* more human-hours than estimated, fine-tuning "standard" attacks can be better

Sponsors Acknowledgement

We acknowledge the generous support of the following sponsors to our team:

CyLab IoT Initiative	Infineon
AT&T	Nokia Bell Labs
AWS	Rolls-Royce
Cisco	Siemens

(Any opinions, findings, and conclusions or recommendations expressed in this material are those of our team and do not necessarily reflect the views of our sponsors.)

Carnegie Mellon University Computer Science Department

Thank you!

Carnegie Mellon University Security and Privacy Institute

#eCTF2024

Welcome DOUG SANTOS

Director, Advanced Threat Intelligence

FBTINET_®

© 2024 MITRE Engenuity, LLC. Approved for Public Release. Document number ME0132

Douglas Santos : Who, What, Why

Douglas Santos Director, Advanced Threat Intelligence

Who IS this guy ?

My first computer

Hackers Movie

First contact with 'The Web'

Who IS this guy ?

The Stack For Fun And Profit

.o0 Phrack 49 0o.

Volume Seven, Issue Forty-Nine

File 14 of 16

BugTraq, r00t, and Underground.Org bring you

by Aleph One aleph1@underground.org

;mash the stack` [C programming] n. On many C implementations : is possible to corrupt the execution stack by writing past ne end of an array declared auto in a routine. Code that does ns is said to smash the stack, and can cause return from the nutine to jump to a random address. This can produce some of ne most insidious data-dependent bugs known to mankind. riants include trash the stack, scribble the stack, mangle ne stack; the term mung the stack is not used, as this is ever done intentionally. See spam; see also alias bug, indango on core, memory leak, precedence lossage, overrun screw.

the paper that changed it all

wilson	vwbusguy: Remember originally it was "why in the world would you want to	ChanServ	18:29:28		Mode &bitlbee [+v tha			
	be connected to the network if you weren't logged in?"	agk	18:29:28		> Ben-Atma-Wop (rhvs200			
		aitrus	18:29:28		Mode &bitlbee [+v Ben			
nirik	mwilson: it just needs the system wide backend keyring support which I	AJ Z0	18:29:28		> Jotver-Wop (jotvergod			
	understand is being worked on.	AJC_Z0	18:29:28		<pre>++> Ray (582791565@oscar)</pre>			
	ZBandit: /etc/xll/xorg.conf	Akegata	18:29:29		<pre>@root msn(demone_youngblood</pre>			
<	asalles (n=asalles@pc-190-81-214-201.cm.vtr.net) has quit (Remote closed	aldren			buddy list			
1.1	the connection)	alex12	18:29:29		<pre>oroot msn(demone@messiah.at</pre>			
Bandit	I have no xorg.conf file located there.	amelia	18:29:29		groot msn(demone@messiah.at			
	csmart: No, we're suggesting being "intelligent", and actually looking at	Andries	18:29:30		groot msn(demone youngblood			
	the log, not randomly picking packages that might have been installed	ASDXX	18:29:30		> Xarathorn-DS (xaratho			
	"around the same time".	athomas	18:29:30		Mode &bitlbee [+v Xar			
	Zathrus: in a sec, ill show you my irc setup	Authority	18:29:32		emoen Kristen-Yahoo: love y			
	Zathrus: youll probably freak, lol	bdperkin	18:29:36		emoen Kristen-Yahoo: ill be			
<		BedMan	18:30:14	+Kristen-	Yahoo daemoen: 0k			
1	(Remote closed the connection)	bennyturns	18:41:08	eda	emoen Greg: hehe			
	asalles (n=asalles@pc-190-81-214-201.cm.vtr.net) has joined #fedora	benvon	18:41:22		emoen Greg: my setup got a			
	fqhuy (n=hoan@123.22.15.254) has joined #fedora	bigjohnto ++			emoen Greg: lol			
		Digjonnio ++						
ode 9:#r	hel(+tnc){211} [Act: 7,6,13,14,1,1,1,6,11]				<pre>bitlbee] 2:&bitlbee(+t){20} [</pre>			
			daemoen					
y: yum cl			Welcome to the control channel. Type help for I					
hellburn	er libwrap.so.0()(64bit) is needed by	edonavan	18:44:34	eroot	Nick successfully changed			
	openssh-server-4.3p2-29.el5.x86 64	chughesir	18:44:39	ødae∎oen	rename billrooney BillRoone			
Zathr		dtimverhoeven	18:44:39		billrooney is now known as			
hellburn		atru tru	18:44:39					
hellburn		oz00dax		<mark>@</mark> dae∎oen	rename golson70 GregOlson			
<	porjo (n=chatzill@unaffiliated/porjo) has quit ("ChatZilla 0.9.85	[biabia]	18:44:43		golson70 is now known as Gr			
	[Firefox 3.0.13/2009080315]*)	[D-Coy]Adam	18:44:43	Groot	Nick successfully changed			
Zathr	us heck if we care; that's not Cent05.	[dnp]	18:44:48	odae∎oen	rename sachingp SachinGupta			
	-> Stefanot (n=sm@79.125.155.225) has joined #centos	[pwgr]	18:44:48		sachingp is now known as Sa			
hellhurn	er it's apparently required by CentOS's rpm's for openssh-server	bugz	18:44:48	Groot	Nick successfully changed			
odonav		lOtke		daemoen	rename thedbatrix LaineCamp			
	us donavan: he cannot: it's not Cent05.	_newbie4	18:44:53		thedbatrix is now known as			
Zathr	us donavan: ne cannot; it's not centus.							
		nono	18:44:53		Nick successfully changed			
Zathr	us as you well know :P	_Sharker	18:44:57	@dae∎oen	rename rubinabdi RubinAbdi			
hellburn	er tcp_wrappers-7.6-40.6.el5.x86_64.rpm_apparently.	Nix _	18:44:57		rubinabdi is now known as R			
hellburn	er http://www.webhostingtalk.com/showthread.php?t=706445	aaggel	18:44:57	Groot	Nick successfully changed			
hellburn		Abner	18:45:03	daemoen	rename saffarnia ArashSaffa			
	us we *really* don't care.	Abnix	18:45:03		saffarnia is now known as A			
	an Zathrus: actually, I wasn't paying attention in another channel		18:45:03		Nick successfully changed			
		acarusiz ++						
odej /:#c	entos(+tnc){416} [Act: 7,6,13,14,1,1,1,6,11]				workim] 3:&bitlbee(+t)(10) [A			
			[daemoen					
			The Mana	gement Tea	<pre>m of B2 Net Solutions Inc. .</pre>			
ean pytho	n-notify	ChanServ	14:36:21	jdhore	yes			
		FlashCode	16:29:54		J00SE (j00se@helper.b2shell			
rd		gkolter	16:30:06					
	/python load notify.py ?	FlashB0t	16:30:11		Mode #opers [-o Nosferatu]			
			16:30:14					
cessfully		aep			Mode #opers [+o J00SE] by J			
		Aexoden	16:30:20		oops wrong name			
	notification system for weechat	aitch	16:30:20		hehe			
t's what	the description says	alturiak	17:42:37	ødaemoen	bwahahahah!			
you try	/help notify?	Ar2r	18:10:45		Nosferatu (Drac@helper.b2sh			
	<pre>lp to see if any new commands were added?</pre>	ArcAngel	18:29:05		End of backlog (
	ow known as kalpik							
	on kiloni us kucpak	atari BigE	18:29:05					
					daemoen (daemoen@staff.b2sh			
n't here		bjoernfan	18:29:05		Topic for #opers is "The Ma			
prob		blo1			want/need links to the docs			
	otify did not bring anything	Caleb	18:29:05		Topic set by jdhore on Fri .			
ne check	the code	chbok	18:29:05		Nicks #opers: [&awstott @Ch			
	y with my nick again, please	c ins 3274	18:29:05		Channel #opers: 7 nicks (5			
, cored		codemac	18:29:05		Channel created on Sat Jul			
	ng the window	cored ++						
		corea ++						
ode 16:2	weechat(+tn){87} [Act: 7,6,13,14,1,1,1,6,11]		18:48		<pre>b2shells1 5:#opers(+0Pnst)(7)</pre>			

#phrack @ freenode

Internet in the late 90's was like

What ARE you doing ?

\$ whatis dsantos

Threat Intelligence

CTID Research Sponsor

Tell me again WHY are you doing this ?

\$ man dsantos

F P T I D E T _B

2024 eCTF Final Results

Special Awards

Special Award Top High School

Awarded to the high school team with the most points at the end of the competition

Special Award: Top High School

#eCTF2024

Delaware Area Career Center 0xDACC

Samuel Goodman, Ezequiel Flores, Tyler McColeman, Cameron Crossley, Beau Schwab, Seth Tydings, David Nunley, Grayson Seger, Andrew Langan, David Nunley, Tyler McColeman, Jake White, Henry Reid, Ethan Martindale Advised by: Eli Cochran

Special Award Best Poster

Awarded to the team that was given the highest-scoring poster as judged by a panel of experts

Special Award: Best Poster

#eCTF2024

Purdue University Team b01lers

Nicholas Andry, Han Dai, Philip Frey, Jorge Hernandez, Ji Hun Hwang, Siddha rth Muralee, Jaxson Pahukula, Mihir Patil, Adrian Persaud, Vinh Pham Ngoc T hanh, Jack Roscoe, Gabriel Samide, Lucas Tan, Vivan Tiwari, Neil Van Eikema Hommes, Jacob White, Tianze Wu, Kevin Yu Advised by: Christina Garman, Mohammadkazem Taram, Santiago Torres-Arias

Special Award Responsible Disclosure

Awarded to a team that identified a potential vulnerability that could have undermined the security of the competition and went through the responsible disclosure process to report the finding

Special Award: Responsible Disclosure

#eCTF2024

CARNEGIE MELLON UNIVERSITY Team Plaid Parliament of Pwing

Akash Arun, Andrew Chong, Nandankumar Desai, Aditya Desai, Quinn Henry, Sirui Huang, Tongzhou Liao, David Rudo, John Samuels, Anish Singhani, Carson Swoveland, Rohan Viswanathan, Gabriel Zaragoza

Advised by: Anthony Rowe, Patrick Tague, Maverick Woo

Final Scoring Breakdown

- Final scores are a combination of:
 - Design Phase flags
 - Defensive points
 - Offensive points
 - Documentation points
 - Poster points

 Documentation points and poster points are not shown on the scoreboard

Offensive Points: 91,105				Design Flags: 55,400			Post-Scoreboard: 46,687	Defensive Points: 2		8,285
							Damaged Boot: 449	l Chai	upply in Boot: 1238	
	Operational Pin E 12732		ed Boot: 12727					Supply Chain Black Box		
Operational Pump Swap: 15583				Final Design: 28000				Extract: 4217	Extr 41	ract: 180
Jwap. 13365					Boot Reference Design: 5800	Debugger: 4900	Documentation: 30885	Box Boot:	Opera Pin Extract:	Oper Pump Swap:
Supply Chain Boot: 12972	Black Box Boot: 12721	Supply Chain Extract: 12201	Black Box Extract: 12169	Read the Rules: 6500	Design Document: 5400	Testing Service: 4800	Poster: 15802	3986 3 Other: 4937		3254

Preliminary Scoreboard Results

#eCTF2024

Attack Phase Scores Over Time

#eCTF2024

MITRE III ENGENUITY

Race for Fifth

#eCTF2024

MITRE III ENGENUITY

Third Place \$2,500

Third Place

#eCTF2024

26,926 Final Points 166 Flags Captured

PURDUE UNIVERSITY Team b01lers

Nicholas Andry, Han Dai, Philip Frey, Jorge Hernandez, Ji Hun Hwang, Siddha rth Muralee, Jaxson Pahukula, Mihir Patil, Adrian Persaud, Vinh Pham Ngoc T hanh, Jack Roscoe, Gabriel Samide, Lucas Tan, Vivan Tiwari, Neil Van Eikema Hommes, Jacob White, Tianze Wu, Kevin Yu

Advised by: Christina Garman, Mohammadkazem Taram, Santiago Torres-Arias

Second Place \$5,000

Second Place

#eCTF2024

28,660 Final Points 173 Flags Captured

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

Team SIGPwny

Team Leads: Minh Duong, Jake Mayer, Emma Hartman, Hassam Uddin

Team Members: Juniper Peng, Timothy Fong, Krish Asher, Adarsh Krishnan, Liam Ramsey, Yash Gupta, Suchit Bapatla, Akhil Bharanidhar, Zhaofeng Cao, Ishaan Chamoli, Tianhao Chen, Kyle Chung, Vasunandan Dar, Jiming Ding, Sanay Doshi, Shivaditya Gohil, Seth Gore, Zexi Huang, George Huebner, Haruto Iguchi, Parithimaal Karmehan, Jasmehar Kochhar, Arjun Kulkarni, Julia Li,

Jingdi Liu, Richard Liu, Theodore Ng, Stefan Ninic, Henry Qiu, Neil Rayu, Ram Reddy, Sam Ruggerio, Naavya Shetty, Arpan Swaroop, Raghav Tirumale, Yaoyu Wu

Advised by: Professor Kirill Levchenko, PhD

First Place \$10,000

First Place

41,581 Final Points 175 Flags Captured

CARNEGIE MELLON UNIVERSITY Team Plaid Parliament of Pwing

Akash Arun, Andrew Chong, Nandankumar Desai, Aditya Desai, Quinn Henry, Sirui Huang, Tongzhou Liao, David Rudo, John Samuels, Anish Singhani, Carson Swoveland, Rohan Viswanathan, Gabriel Zaragoza

Advised by: Anthony Rowe, Patrick Tague, Maverick WooMITRE

#eCTF2024

Rank	Change	Team	Scoreboard Score	Final Score	Rank	Change	Team	Scoreboard Score	Final Score	
1	0	Carnegie Mellon University	39052	41581	17	+7	East Tennessee State University	1527	3376	
2	0	University of Illinois Urbana-Champaign	26318	28660	18	-5	Kilgore College	2290	3368	
3	0	Purdue University	24501	26926	19	+1	United States Coast Guard Academy	1533	3316	
4	0	University at Buffalo	10422	12558	20	+6	Virginia Tech	1519	3268	
5	+1	Indian Institute of Technology Madras	6135	8275	21	-7	Michigan Technological University	1867	3088	
6	-1	Delaware Area Career Center	6225	8216	22	+1	Massachusetts Institute of Technology	1528	3020	
7	0	Ecole Royale de l'Air	5844	7447	23	-4	Λ	Shawnee Mission Center for Academic	1656	2572
8	0	Indian Institute of Technology Indore	4660	6614	23		Achievement	1000	2512	
9	0	Michigan State University	4483	6393	24	-2	United States Air Force Academy	1529	2445	
10	0	University of Nebraska Omaha	3506	5644	25	-7	University of Texas at Arlington	1751	2412	
11	0	University of California, Irvine	3265	4964	26	-1	University of Colorado, Colorado Springs	1521	2386	
12	+4	Florida Atlantic University	1850	3974	27	1	Oklahoma Christian University	1313	2195	
13	+2	Tennessee Tech University	1863	3843	28	-1	CyberAegis	1401	2012	
14	+3	Tufts University	1757	3803	29	+12	ISD 196	509	1198	
15	+6	University of Connecticut	1530	3698	30	+10	Pace University	512	1192	
16	-4	Colombe Academy of Technology	2417	3540	31	+6	University of New Haven	522	1044	

CLOSING REMARKS

Dan Walters

Senior Principal Microelectronics Solution Lead

SCAVENGER HUNT!

eCTF Alumni Page

Winning Teams Please stay in your seats after the ceremony for photos!

Enjoy the museum!

Nank

2024 MITRE eCTF Award Ceremony

Need help? Seek individuals with purple lanyards for help!

FOR A SAFER WORLD

A Foundation for Public Good